# N-ALKYLATION OF PYRAZOLES WITH MANNICH BASES DERIVED FROM *ortho*-HYDROXYACETOPHENONES\*

# Gh. Roman<sup>1</sup>, E. Comanita<sup>2</sup>, and B. Comanita<sup>3</sup>

The involvement of Mannich bases derived from ortho-hydroxyacetophenones in amine-exchange reactions with pyrazole and methyl- and/or halogen-substituted pyrazoles was studied. The corresponding  $\beta$ -(pyrazol-1-yl)ethyl ketones resulted in excellent yield and were characterized by elemental analysis, IR, and <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy.

Keywords: Mannich bases, pyrazole N-alkylation, ortho-hydroxyacetophenones.

It is well known that NH-heterocycles act both as substrates and amine components in Mannich reaction [2, 3]. The direct aminomethylation of ketones using formaldehyde and NH-azoles (pathway i in Scheme 1) has been reported only scarcely [4, 5]. Other more efficient procedures have been preferred to produce 2-(1-azolyl)ethyl ketones 1, namely nucleophilic substitution of  $\beta$ -chloro ketones (pathway ii) [6, 7], addition to the activated carbon-carbon double bond in  $\alpha$ , $\beta$ -unsaturated ketones (pathway iii) [8, 9], and, finally, the amine exchange reaction between a dialkylamine Mannich base and a NH-azole (pathway iv) [10].



\* Communication 10 in the series "Synthesis and Reactivity of Mannich Bases"; for communication 9, see [1].

1072

<sup>&</sup>lt;sup>1</sup> Transilvania University, Chemistry Department, RO-2200 Brasov, Romania; e-mail: gh.roman@info.unitbv.ro. <sup>2</sup> Gh. Asachi Technical University, Department of Organic Chemistry, RO - 6600 IASI, Romania; e-mail: ecomanit@ch.tuiasi.ro. <sup>3</sup> National Research Council of Canada, Institute for Chemical Process and Environmental Technology, KIA OR6 Ottawa, Canada; e-mail: comanita@sympatico.ca. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1228-1232, September, 2002. Original article submitted February 6, 2001.

In contrast to imidazole [11, 12] and 1,2,4-triazole [13] derivatives, which are frequently used in the synthesis of antifungal Mannich bases **1a** (X = CH, Z = N, Y = CH) and **1b** (X = CH, Z = N, Y = N) containing an azole as the amine moiety [14], little is known about 2-(l-pyrazolyl)ethyl ketones **1c** (X = N, Z = CH, Y = CH). The present work is devoted to the preparation of some Mannich bases by replacing the easily leaving aliphatic amine residue in  $\beta$ -amino ketones with several N-unsubstituted pyrazoles. The above-mentioned  $\beta$ -amino ketones employed in the N-alkylation of pyrazoles resulted from the direct aminomethylation of *ortho*-hydroxyacetophenones [15, 16]. The resulting pyrazole-containing Mannich bases **2** are valuable intermediates for the synthesis [17] of potentially biologically active 1,2-benzisoxazoles **3**.



A typical amine exchange procedure involves treatment of molar amounts of a Mannich base hydrochloride with an equimolar amount of pyrazole or its C-substituted derivative (ethanol-water 1:1 as the solvent, 1 h) to give the desired products in good to excellent yields. This method, when compared to others, offers the advantage of a simple separation [11] and the use of environmentally friendly solvents [18]. Excess of pyrazole has not been found to significantly improve the yield; on the contrary, in some cases, the separation of the unreacted pyrazole from the reaction mixture together with the target amino ketone **3** hinders the latter's crystallization and renders its purification more difficult. Scheme 2 presents the N-alkylated pyrazoles obtained from Mannich bases of two *ortho*-hydroxyacetophenones. Table 1 summarizes some characteristics for the pyrazole-containing Mannich bases **2a-h**.

From a mechanistic point of view, by using pyrazole as nucleophile, the reaction probably involves elimination of the dialkylamino group followed by a Michael addition or proceeds *via* a nucleophilic substitution pattern.

## Scheme 2



The IR spectra of amino ketones 2 exhibit a characteristic sharp absorption band at approximately  $1650 \text{ cm}^{-1}$  (C=O in aromatic *ortho*-hydroxy aldehydes and ketones) and a wide band at about 3200 cm<sup>-1</sup> (phenolic hydroxyl).

In the <sup>1</sup>H NMR spectra (Table 2) the triplets at about 3.6 and 4.4-4.6 ppm have been attributed to methylene protons neighboring the carbonyl group and the pyrazole moiety. The phenolic hydrogen atom gives a broad peak above 12 ppm, showing its involvement in an intramolecular hydrogen bonding. Heterocyclic methyl groups, whenever present, appear as singlets near 2 ppm; note the decrease in the chemical shift for protons in methyl groups attached to the pyrazole ring in compounds **2** compared to those for the corresponding N-unsubstituted 3,5-dimethylpyrazole [19]. The correct assignment for the aromatic protons in most compounds **2** was attempted.

| Com-<br>pound | Empirical formula      | Weight | <u>Found N, %</u><br>Calculated N, % | mp, °C  | $IR, \\ \nu_{C=O}, cm^{-1}$ | Yield, % |
|---------------|------------------------|--------|--------------------------------------|---------|-----------------------------|----------|
| 2a            | $C_{12}H_{12}N_2O_2$   | 216    | $\frac{13.09}{12.96}$                | 83-84   | 1655                        | 75       |
| 2b            | $C_{12}H_{11}IN_2O_2$  | 342    | <u>8.02</u><br>8.18                  | 105-106 | 1648                        | 77       |
| 2c            | $C_{14}H_{15}ClN_2O_2$ | 278.5  | $\frac{10.19}{10.05}$                | 122-123 | 1649                        | 86       |
| 2d            | $C_{14}H_{15}IN_2O_2$  | 323    | $\frac{8.75}{8.66}$                  | 153-154 | 1640                        | 94       |
| 2e            | $C_{13}H_{13}IN_2O_2$  | 356    | $\frac{7.97}{7.86}$                  | 124-125 | 1648                        | 78       |
| 2f            | $C_{15}H_{17}ClN_2O_2$ | 292.5  | $\frac{9.75}{9.57}$                  | 123-125 | 1655                        | 96       |
| 2g            | $C_{15}H_{17}IN_2O_2$  | 384    | $\frac{7.35}{7.29}$                  | 128-129 | 1650                        | 78       |
| 2h            | $C_{15}H_{17}N_3O_4$   | 303    | $\frac{13.98}{13.86}$                | 179-181 | 1650                        | 41       |

TABLE 1. Characteristics of the Synthesized N-Alkylated Pyrazoles 2

Based on our previous reports on the chemistry of Mannich bases derived from *ortho*-hydroxyacetophenones [15, 16, 20, 21], the assignment of each signal in the <sup>13</sup>C NMR spectra (Table 3) of compounds **2** was accurately established. Methylene carbon atoms bridging the two aromatic rings gave signals

TABLE 2. <sup>1</sup>H NMR Spectra of N-Alkylated Pyrazoles 2



| Com-<br>pound | <sup>1</sup> H NMR spectrum, $\delta$ , ppm, ( <i>J</i> , Hz)                                                                                                                                                                                                                                                                                                                                                             |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2a            | 3.62 (t, 2H, $J = 6.8$ , -COCH-); 4.59 (t, 2H, $J = 6.6$ , -CH <sub>2</sub> N<); 6.21 (t, 1H, $J = 2$ , H <sub>F</sub> );<br>6.85-6.90 (m, 1H, H <sub>A</sub> ); 6.95-6.99 (m, 1H, H <sub>c</sub> ); 7.43-7.47 (m, 1H, H <sub>B</sub> );<br>7.49 (d, 1H, $J = 2$ , H <sub>E</sub> ); 7.51 (d, 1H, $J = 2$ , H <sub>G</sub> ); 7.70 (dd, 1H, $J_{1,3} = 1.6$ , $J_{1,2} = 8.1$ , H <sub>D</sub> );<br>12.03 (s, 1H, Ar-OH) |
| 2b            | 3.56 (t, 2H, <i>J</i> = 6.4, -COCH <sub>2</sub> -); 4.54 (t, 2H, <i>J</i> = 6.4, -CH <sub>2</sub> N<); 6.82-6.95 (m, 2H); 7.41-7.52 (m, 3H); 7.63-7.65 (m, 1H); 11.93 (s, 1H, ArOH)                                                                                                                                                                                                                                       |
| 2c            | 2.18 (s, 3H, $-CH_3$ ); 2.29 (s, 3H, $-CH_3$ ); 3.59 (t, 2H, $J = 6.6$ , $-COCH_2-$ );<br>4.37 (t, 2H, $J = 6.6$ , $-CH_2N<$ ); 6.88–6.91 (m, 1H, H <sub>A</sub> ); 6.95-6.99 (m, 1H, H <sub>C</sub> );<br>7.44-7.50 (m, 1H, H <sub>B</sub> ); 7.72 (dd, 1H, $J_{1,3} = 1.8$ , $J_{1,2} = 8.1$ , H <sub>D</sub> ); 12.01 (s, 1H, Ar–OH)                                                                                   |
| 2d            | 2.16 (s, 3H, $-CH_3$ ); 2.31 (s, 3H, $-CH_3$ ); 3.56 (t, 2H, $J = 6.6$ , $-COCH_2-$ );<br>4.41 (t, 2H, $J = 6.6$ , $-CH_2N<$ ); 6.80–6.84 (m, 1H, H <sub>A</sub> ); 6.88–6.95 (m, 1H, H <sub>C</sub> );<br>7.39-7.47 (m, 1H, H <sub>B</sub> ); 7.65–7.70 (m, 1H, H <sub>D</sub> ); 11.97(s, 1H, ArOH)                                                                                                                     |
| 2e            | 2.26 (s, 3H, $-CH_3$ ); 3.57 (t, 2H, $J = 6.4$ , $-COCH_2-$ ); 4.55 (t, 2H, $J = 6.4$ , $-CH_2N<$ ); 6.86 (d, 1H, $J = 8.4$ , $H_A$ ); 7.26 (d, 1H, $J = 8.4$ , $H_B$ ); 7.43 (s, 1H, $H_G$ ); 7.48 (s, 1H, $H_E$ ); 7.54 (s, 1H, $H_D$ ); 11.80 (s, 1H, Ar–OH)                                                                                                                                                           |
| 2f            | 2.18 (s, 3H, $-CH_3$ ); 2.27 (s, 6H, $-CH_3$ ); 3.57 (t, 2H, $J = 6.6$ , $-COCH_2-$ );<br>4.37 (t, 2H, $J = 6.6$ , $-CH_2N<$ ); 6.86 (d, 1H, $J = 8.5$ , H <sub>A</sub> );<br>7.27 (dd, 1H, $J_1 = 2$ , $J_{12} = 8.6$ , H <sub>B</sub> ); 7.46 (d, 1H, $J_{13} = 1.7$ , H <sub>D</sub> ); 11.84 (s, 1H, Ar–OH)                                                                                                           |
| 2g            | 2.18 (s, 3H, $-CH_3$ ); 2.25 (s, 3H, $-CH_3$ ); 2.30 (s, 3H, $-CH_3$ );<br>3.54 (t, 2H, $J = 6.7$ , $-COCH_2$ -); 4.42 (t, 2H, $J = 6.6$ , $-CH_2Ar$ ); 6.85 (d, 1H, $J = 8.6$ , $H_A$ );<br>7.24 (s, 1H, $H_B$ ); 7.43 (d, 1H, $J_1 = 1.5$ , $H_D$ ); 11.80 (s, 1H, $Ar$ -OH)                                                                                                                                            |
| 2h            | 2.31 (s, 3H, $-CH_3$ ); 2.49 (s, 3H, $-CH_3$ ); 2.73 (s, 3H, $-CH_3$ );<br>3.66 (t, 2H, $J = 6.2$ , $-COCH_2$ -); 4.43 (t, 2H, $J = 6.2$ , $-CH_2$ N<); 6.89 (d, 1H, $J = 8$ , H <sub>A</sub> );<br>7.31 (d, 1H, $J_{1,2} = 8$ , H <sub>B</sub> ); 7.49 (s, 1H, H <sub>D</sub> ); 11.73 (s, 1H, Ar–OH)                                                                                                                    |

TABLE 3. <sup>13</sup>C NMR Spectra of Pyrazole-containing Mannich Bases 2



| Com-<br>pound | Ar–CH3 | -CO <u>C</u> H2CH2N< | C(1)   | C(2)   | C(3)   | C(4)   | C(5)   | C(6)   | C=O    | Heterocycl.<br>CH <sub>3</sub> | Other aromatic carbon atoms |
|---------------|--------|----------------------|--------|--------|--------|--------|--------|--------|--------|--------------------------------|-----------------------------|
| 2a            | _      | 38.42;<br>45.19      | 129.80 | 118.54 | 162.36 | 105.40 | 130.07 | 139.75 | 203.24 |                                | 119.13; 136.74              |
| 2b            | —      | 38.54;<br>46.92      | 130.11 | 119.01 | 162.76 | 56.30  | 135.01 | 145.13 | 203.12 | _                              | 119.45; 119.60;<br>137.27   |
| 2c            | —      | 37.93;<br>43.54      | 129.89 | 118.55 | 162.36 | 107.48 | 135.77 | 144.89 | 203.24 | 9.36;<br>11.34                 | 119.13; 136.76              |
| 2d            | —      | 38.01;<br>43.83      | 129.79 | 118.44 | 162.23 | 62.53  | 140.80 | 149.64 | 203.11 | 11.93;<br>13.98                | 119.03; 136.66              |
| 2e            | 20.46  | 38.10;<br>46.54      | 128.28 | 118.62 | 160.20 | 55.85  | 134.55 | 144.63 | 202.52 | _                              | 118.26; 129.34;<br>137.89   |
| 2f            | 20.45  | 37.97;<br>43.69      | 128.27 | 118.82 | 160.27 | 107.48 | 135.82 | 144.85 | 203.16 | 9.34;<br>11.34                 | 118.23; 129.60;<br>137.83   |
| 2g            | 20.39  | 38.06;<br>43.98      | 128.15 | 118.69 | 160.13 | 62.50  | 140.82 | 149.62 | 203.03 | 11.90;<br>13.99                | 118.12; 129.49;<br>137.73   |
| 2h            | 20.46  | 37.08;<br>43.27      | 128.38 | 118.52 | 160.26 | 124.77 | 140.88 | 146.48 | 202.26 | 11.54;<br>14.20                | 118.33; 129.34;<br>138.06   |

at about 37-38 and 44-47 ppm. Aromatic carbon atoms linked to hydroxyl and carbonyl groups presented peaks at about 160 and above 200 ppm, respectively. In the series of Mannich bases **2f-h** derived from 2-hydroxy-5-methylacetophenone and variously 4-substituted 3,5-dimethylpyrazoles we note the modification of the  $\delta$  value for the C-4 atom in the pyrazole ring with the substituent.

## **EXPERIMENTAL**

The melting points were taken on a Büchi 540 B apparatus and are uncorrected, IR spectra were determined on a Specord M80 (Carl Zeiss, Jena) spectrophotometer in KBr pellets. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> on a Varian INOVA 300 instrument. All chemical shifts are reported in ppm downfield from tetramethylsilane.

4-Chloro-3,5-dimethylpyrazole [22], 4-iodo-3,5-dimethylpyrazole [23], and 3,5-dimethyl-4-nitropyrazole [23] were prepared by literature methods. The required Mannich bases were obtained as described [15, 16].

**1-(2-Hydroxyphenyl)-3-(pyrazol-1-yl)propan-1-one (2a).** 3-Dimethylamino-1-(2-hydroxyphenyl)propan-1-one hydrochloride [16] (2.295 g, 10 mmol) and pyrazole (0.68 g, 10 mmol) were refluxed in 12 ml 1:1 (v/v) ethanol–water mixture for 1 h. The oily reaction product crystallized on cooling. The solid was filtered off, washed with water, and recrystallized from ethanol. All other N-alkylated pyrazoles 2 were prepared in a similar manner.

## REFERENCES

- 1. E. Comanita, I. Popovici, B. Comanita, and Gh. Roman, Bull. Inst. Politehn. Iasi, 46 (50), 19 (2000).
- 2. M. Tramontini, Synthesis, 703 (1973).
- 3. M. Tramontini and L. Angiolini, *Tetrahedron*, **46**, 1791 (1990).
- 4. H. Ran and J. Ding, CN 1,107,474 (1994); Chem. Abstr., 124, 261038 (1996).
- 5. R. I. Ishmetova, V. G. Kitaeva, and G. L. Rusinov, Zh. Org. Khim., 31, 431 (1995).
- 6. R. Schaller, H. Ehrhardt, B. Sachse, B. Buerstell, H. Bieringer, and K. Klaus (Hoechst A.-G.), EP 132,771; *Chem. Abstr.*, 103, 160511 (1985).
- 7. A. Popov, Zh. P. Piskunova, V. N. Matvienko, G. P. Kondratenko, and Yu. I. Nikolenko, *Khim.-Farm. Zh.*, **23**, 1232 (1989).
- 8. T. Maier and H. Mildenberger, Angew. Chem., 92, 128 (1980).
- 9. J. P. Dickens, G. J. Ellames, N. J. Hare, K. R. Lawson, W. R. McKay, A. P. Metters, P. L. Myers, A. M. S. Pope, and R. M. Upton, *J. Med. Chem.*, **34**, 2356 (1991).
- 10. F. Andreani, R. Andrisano, C. Della Casa, and M. Tramontini, *Tetrahedron Lett.*, 1059 (1968).
- 11. D. F. Rane, A. G. Fishman, and R. E. Pike, *Synthesis*, 694 (1984).
- 12. K. Takahashi, S. Shimizu, and M. Ogata, Synth. Commun., 17, 809 (1987).
- 13. C. Rentzea, E. Ammermann, and E. H. Pommer (BASF A.-G.), DE 3,011,258; *Chem. Abstr.*, **96**, 35250 (1982).
- 14. L. Zirngibl, Antifungal Azoles, Wiley-VCH, New York (1998), p. 113.
- 15. E. Comanita, I. Popovici, B. Comanita, and Gh. Roman, ACH-Models Chem., 134, 3 (1997).
- 16. E. Comanita, Gh. Roman, I. Popovici, and B. Comanita, J. Serb. Chem. Soc., 66, 9 (2001).
- 17. E. Comanita, I. Popovici, Gh. Roman, G. Robertson, and B. Comanita, *Heterocycles*, **51**, 2139 (1999).
- 18. C. Montigoul, M.-J. Richard, C. Vigne, and L. Giral, J. Heterocycl. Chem., 21, 1489 (1984).
- 19. J. Elguero, R. Jacquier, and H. C. N. Tien Due, Bull. Soc. Chim. Fr., 3727 (1966).
- 20. Gh. Roman, E. Comanita, B. Comanita, and C. Draghici, J. Serb. Chem. Soc., 63, 931 (1998).
- 21. Gh. Roman, D. Nanu, E. Comanita, and B. Comanita, Turk. J. Chem., 24, 67 (2000).
- 22. K. von Auwers and K. Bähr, J. Prakt. Chem. [2], 116, 65 (1927).
- 23. G. T. Morgan and I. Ackerman, J. Chem. Soc., 123, 1308 (1923).